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PREFACE

This report describes in detail innovative analytical research aimed at demonstrating
the remarkable potential of an actively controlled partial span flap, located on the trailing
edge of the blade, for vibration reduction in helicopter rotors in forward flight.

The research described in this report was carried out in the Mechanical, Aerospace and
Nuclear Engineering Department at UCLA, and it was funded jointly by NASA Grants NAG
2.477 and NASA NGT-50444 with Dr. S. Jacklin, from the Rotorcraft Aeromechanics Branch
at NASA Ames, as the grant monitor. The authors express their appreciation to the grant
monitor for his useful comments and suggestions.

The principal investigator for this sponsored research activity was Professor Peretz P.
Friedmann. This constitutes essentially the first author’'s Ph.D. dissertation; however, cer-
tain changes were made to the dissertation, so as to improve it, before turning it into this

report.
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SUMMARY

This report describes an analytical study of vibration reduction in a four bladed heli-
copter rotor using individual blade control (IBC) implemented through an actively con-
trolled, partial span, trailing edge flap located on the blade. Two different blade models
are used in the study: (a) an offset-hinged spring restrained blade model with fully coupled
flap-lag-torsional dynamics, and {b) a completely flexible elastic blade model using three
flap, two lead-lag and two torsional rotating modes. For both blade models the vibration
reduction with the actively controlled flap is compared with the vibration reduction
produced by conventional IBC, in which the entire blade undergoes cyclic pitch change.
For both cases a deterministic controller is implemented to reduce the 4/rev hub loads.
For all cases considered it is found that the actively controlled flap produced vibration re-
duction comparable with that obtained with conventional IBC, however the power require-
ments are between 10-30% of those needed for conventional IBC. The control studies
performed using the flexible blade model and the offset-hinged spring restrained blade
model are compared. It is found that despite large increases in vibration levels due to the
more realistic blade model, vibration reduction can still be accomplished without excessive
power expenditures or control angle inputs. A careful parametric study is conducted in
which the blade torsional frequency, spanwise location of the control flap, and hinge mo-
ment correction factor are varied. The results ciearly demonstrate the feasibility of this
new approach to vibration reduction. There is also indication that this approach. in which
a conventional swashplate is used in conjunction with the actively controlied flap such that
the vibration reduction device is completely decoupled.from the primary flight control sys-
tem used for trim, has potentially significant advantages over conventional IBC. Finally,
time domain simulation of the helicopter response to control is performed, validating the
frequency domain based control algorithms that have been implemented to reduce vi-
brations.

Xix






Chapter |

INTRODUCTION AND OBJECTIVES OF THIS STUDY

1.1 INTRODUCTION AND BACKGROUND

Vibrations in helicopters, which arise from such sources as the rotor system, the tail
rotor, the engine and the transmission, lead to fatigue damage of the structural compo-
nents, human discomfort, difficulty in reading instruments and the reduced effectiveness
of weapon systems. A comprehensive review on the sources of vibration is presented in
Refs. 29 and 41. A major goal of current helicopter research is thus to reduce the vibration
levels experienced by crew, passengers and equipment during flight.

Current research has been driven by both commercial and military requirements.
Commercial passenger acceptance would greatly benefit from the perception of the heli-
copter as having a “jet smooth ride”. Furthermore, reduction of vibration levels would lead
to the reduction of high maintenance/replacement costs associated with the fatigue dam-
age of structural components. Decreasing vibration levels and allowing higher cruise
speeds would increase the load utilization of helicopters and so decrease relative capital
costs. From a military point of view, increased speed leads to benefits in survivability and
deployment response times. The same maintenance and comfort benefits as for civil op-
erations apply. Reduction in vibration levels in military helicopters allows more accurate
weapons deployment and more effective intelligence gathering.

The traditional approach to vibration reduction in helicopters is based on the use of
passive means such as vibration absorbers or isolation devices. A comprehensive review
of helicopter vibration control presented in Ref. 41 describes many of these methods.

More recent investigations into passive means offer promise of reducing vibrations to
levels below those attainable by vibration absorbers and isolators. One promising ap-
proach involves the design of rotor blades which inherently have low levels of vibration.

This may be done by applying optimum structural design techniques to the aeroelastic



tailoring of the blade. Geometry, mass and stiffness distributions may be optimized to give
minimum vibration levels at the rotor hub or at specified locations in the fuselage. The
fuselage itself may also be tailored to reduce vibrations at various points of interest such
as the pilot seat, passenger compartment or the tail boom. Surveys of the application of
structural optimization to helicopter vibration problems are presented in Refs. 10 and 33.
However, the use of structural optimization may lead to higher manufacturing costs, es-
pecially in the manufacturing of aeroelasticaly tailored rotor blades.

The desire to achieve better vibration reduction has also lead to the use of active con-
trols in reducing helicopter vibrations. Active controllers can be used to reduce vibrations
by eliminating their source, namely the aerodynamic excitation to the rotor. Among the
various approaches which utilize active control for vibration reduction in forward flight, the
approach commonly denoted higher harmonic control (HHC) has emerged as a potential
candidate for possible implementation in production helicopters. This concept relies on the
application of higher harmonic pitch changes {i.e. above the 1/rev pitch changes required
for directional control and vehicle trim) to modify the blade airloads so as to minimize
harmonic blade loading. For a rotor having Ny, blades, the predominant vibrations are at
Ny/rev. In HHC, these are normally alteviated by applying Ny/rev pitch excitations super-
imposed on the collective (i.e. average), lateral (i.e. 1/rev sine) and longitudinal (i.e. 1/rev
cosine) pitch inputs used to control the helicopter attitude and velocity. This is done by
applying Ny/rev harmonics in the fixed system through an actively controlled conventional
swashplate through the use of hydraulic servo-actuators. Numerous studies have demon-
strated the validity of this approach for producing substantial reduction in vibration levels
in forward flight by analytical simulations[5,7,23,34,36.43, 44517, wind tunnel
tests[27.35,49], and flight tests[31,40,56,57].

in an alternative approach, denoted individual blade control {(IBC)[26], the time de-
pendent pitch angle of each blade is independently controlled in the rotating reference
frame. This approach removes many of the limitations which exist in active control through
a conventional swashplate, but a control system more complex than the conventional

swashplate may be required[20.21]. Recent wind tunnel and flight tests illustrate the



considerable mechanical complexity associated with the implementation of this
approach[22,42]. It is worthwhile mentioning that both HHC and conventional I1BC intro-
duce the control for vibration reduction through the primary flight control system of the
helicopter and therefore the presence of such an active vibration control device introduces
some constraints on the system from an airworthiness point of view.

The desire to decrease mechanical complexity and weight, and minimize maintenance
costs, has lead to the development of hingeless and bearingless rotor hubs. In hingeless
rotors the mechanical flap and lead-lag hinges present in articulated biades are replaced
by a flexible cantilevered blade, where the blade flexibility provides for virtual hinges. In
such blades the mechanical pitch bearing is retained. Bearingless rotor blades are similar
to hingeless blades except that the pitch bearing is eliminated and the pitch input is intro-
duced through @ torsionally flexible structural element. Typical articulated, hingeless and
bearingless rotor configurations are shown in Fig. 1. The mechanical simplicity and weight
savings in hingeless and bearingless rotors is generally accompanied by increases in vi-
bratory levels; thus vibration reduction in such rotors becomes an even more important
issue than for articulated rotor configurations.

Recently, comparative studies of vibration reduction in forward flight using HHC were
carried out for equivalent articulated and hingeless rotor configurations[43,447]. For both
configurations substantial vibration reduction was achieved with HHC blade pitch angles
under three degrees. However, a comparison of power requirements revealed that the
power required to implement HHC on hingeless rotor blades is significantly higher than for
the equivalent articulated rotor blades. These higher power requirements appear to be
associated with the need to drive harmonically the fairly large and coupled structural dy-
namic system represented by the hingeless blade.

This provided the motivation for exploring an alternative concept where the modification
of the aerodynamic loads on the blade, for vibration reduction in forward flight, is accom-
plished through the active control of an aerodynamic surface located on the blade, similar
to the partial span trailing edge flap shown in Figs. 2 and 3. It was postulated that such a

device would produce substantial reduction in power requirements when compared with



HHC or conventionat IBC, which require the introduction of cyclic pitch changes for the
whole blade. Furthermore, such an actively controlled flap can be conveniently controlied
by a control loop which is separate from the primary control system; thus it will have no
influence on airworthiness and it will enable one to retain the conventional swashplate for
flight control purposes. It should also be mentioned that this concept is not entirely new;
over twenty years ago researchers at Kaman[28] used a servo flap on a controllable twist
rotor (CTR) configuration to produce an external pitching moment to alter the elastic twist
distribution of the blade. By cyclically varying the blade twist, they were able to achieve
a 30% decrease in blade bending amplitudes, and a considerable increase in rotor per-
formance, as represented by decreases in solidity and rotor power, and an increase in
range.

The use of an actively controlled flap located on the blade to reduce vibrations in for-
ward flight falls into the category of IBC since each aerodynamic surface is individually
controlled in the rotating system. Such a configuration has the potential for reducing vi-
brations with much less power while retaining the versatility of conventional IBC, but
without requiring the replacement of the conventional swashplate by a more complex me-
chanical system, and without adversely affecting the airworthiness.

The review of the literature clearly indicates that the use of an actively controlied, par-
tial span, trailing edge flap to reduce helicopter vibrations has not been studied previously.
Therefore, the first portion of this study represents a feasibility study of the proposed con-
cept, while the second part deals with issues conce;ning the practical implementation of
the new approach to vibration reduction.

It is expected that this research will have a significant influence on the field of vibration

reduction in rotorcraft.



1.2 OBJECTIVES OF THE RESEARCH

The first objective of this study is the development of an aeroelastic analysis for the

purposes of studying individual blade control (IBC) as implemented through an actively

controlled trailing edge flap located on the blade. After the analysis had been deveioped,

the ultimate goals of this research were addressed. These goals are described below.

Initially, a simple offset-hinged spring restrained rigid blade model is used to study the

feasibility of this novel approach for reducing vibrations. The objectives of this first stage

of the research are:

1.

Study of the relative effectiveness of IBC when implemented through an active
control surface to achieve vibration reduction in forward flight and its comparison
with conventiona!l IBC.

Compare the power required to implement the control for these two alternative
approaches.

Examine several control algorithms and determine their effectiveness for reducing
vibrations in steady forward flight.

Determine the influence of the blade torsional flexibility on the vibration reduction

effectiveness and power requirements of the various control approaches.

Subsequently. after firmly establishing the feasibility and potential of the actively con-

trolled flap, a more detailed study is carried out which focuses on the practical implemen-

tation of this new approach to reducing vibrations. The objectives of this second stage of

the research are:

1.

Implementation of the actively controlled partial span flap with a fully elastic, ge-
ometrically nonlinear, blade model in which the dynamics of the blade are repres-
ented by two torsional, two chordwise bending and three flapwise bending modes.
Examination of the impartance of appropriately modeling the dynamic behavior of
the blade by comparing results between the two different blade models.

Introduction of compressibility effects and hinge moment correction, which ac-
counts approximately for the gap of the trailing edge flap, so that the aerodynamic

loads on the blade and control flap are represented in a more realistic manner.



4. Trend studies of the effect on the vibration reduction potential of the actively con-
trolled trailing edge flap when the following parameters are changed: (a) spanwise
location and size of the control flap; (b) torsional stiffness of the blade and (c) the
aerodynamic hinge moment correction factor.

In the final stage of this study, the results obtained in the frequency domain are vali-
dated in the time domain by direct numerical integration of the nonlinear equations of
motion. The specific objectives of this last stage are:

1 Validation of the coupled trim and aeroelastic response solution obtained using the

harmonic balance technique.

2 Validation of the optimal control solution obtained in the frequency domain.

it should be emphasized that this is the first study which contains a detailed treatment

of an actively controlled flap for vibration reduction in helicopter rotors.



Chapter 1l

MODELING ASSUMPTIONS AND COORDINATE SYSTEMS

The modeling assumptions which serve as the starting point in the development of the
aeroelastic analysis are summarized in this chapter. The orders of magnitude which are
assigned, based on experience. to the various parameters appearing in the problem for-
mulation are listed. Finally, the various coordinate systems, and related coordinate tran-

sformations, used to formutate the equations of motion are defined.

21 MODELING ASSUMPTIONS

(1) The hingeless blade is cantilevered at the hub with an offset e from the axis of ro-
tation, as shown in Fig. 7.

{2) The blade feathering axis coincides with the elastic axis of the blade and is preconed
by the angle /ip, which is depicted in Fig. 7. The blade has no torque offset, sweep or
droop.

{3) The undeformed blade is straight with a general pretwist distribution Gpt(x) built in
about the elastic axis of the blade.

(4) The blade cross-section is assumed to be symmetrical with respect to its major
principal axes in the formulation of the inertial loads but the effect of camber is accounted
for in an approximate manner when formulating the aerodynamic loads. The blade cross-
section has four distinct points: the elastic center, the aerodynamic center, the mass
center. and the tension center (area centroid), as shown in Fig. 10.

{(5) The blade chord ¢y, mass per unit length my , and principal cross-sectional inertias
lugo and lygs. are allowed to vary along the span of the blade.

(6} The blade has an aerodynamic surface. modeled as a partial span trailing edge flap
{as shown in Figs. 2 and 3), with its centroid a distance x_ from the blade root. The control

flap has a chord length c.5 and a span L.



(7) The leading edge of the control surface is attached to the trailing edge of the blade
by a series of hinges located at a finite number of discrete points along the control surface
span. The axis of each hinge constrains the control flap cross-section to rotate only in the
plane of the blade cross-section.

(8) At least one hinge is restrained in torsion about its axis by a spring representing the
stiffness of the control system. The control flap actuator deflects the flap by the angle o
(positive down) relative to the blade chordline. This angle represents the control input for
the purposes of vibration reduction.

(9) The control surface cross-section is assumed 1o be symmetrical with respect to its
major principal axes and to have the same airfoil section as the blade. The control flap is
assumed to have the same pretwist distribution as the blade.

{10) The control flap chord c.,, mass per unit length m. , and principal cross-sectional
inertias lyc, and lyca, are allowed to vary along its span.

(11) The blade is allowed to have fully coupled flap, lead-lag and torsional dynamics,
undergoing moderate deflections and finite rotations. The blade is treated as inextensible.

(12) Two-dimensional quasisteady Greenberg theory, modified to include the effects of
an aerodynamic surface, is used to obtain the distributed aerodynamic loads. The aero-
dynamic force and moment due to the control flap are scaled by C; < 1, an empirical cor-
rection factor accounting for the presence of a control surface gap, which is not modeled
in this study.

(13) Reverse flow is accounted for by setting the lift and moment to zero inside the re-
verse flow region, and by reversing the sign on the drag term.

(14) Compressibility effects are either neglected, or accounted for in an approximate
manner using the Prandtl-Glauert correction factor. Dynamic stall and tip loss effects are
neglected.

(15) Uniform inflow is assumed for convenience.

(16) The structural damping in the blade is assumed to be of a viscous type.

{17) The rotor shaft is assumed to be rigid and the rotor speed constant.



(18) Four identical blades are combined to represent a four-bladed, hingeless, fixed-hub
rotor configuration in steady, level flight.

The various modeling assumptions listed above are used in the various stages of the
problem formulation. Additional modeling assumptions, specific to a particular blade
model, are discussed in Chapter 4 for the offset-hinged spring restrained blade model, and

in Chapter 5 for the fully elastic blade model.

2.2 EXPLICIT FORMULATION USING A SYMBOLIC COMPUTING FACILITY

There are two distinct approaches commonly used to formulate the equations of motion
of a helicopter rotor blade. The first approach is usually denoted as the explicit approach
because it leads to a set of detailed aeroelastic equations of motion in which all of the
terms (i.e. inertial, aerodynamic and structural) appear as explicit functions of the blade
degrees of freedom. The second approach is usually denoted as the implicit approach. In
this approach detailed expressions for the aeroelastic equations of motion are avoided.
Instead the aerodynamic, inertial and structural loads are generated in matrix form inside
the computer. When this approach is used the boundaries between the formulation phase
and the solution phase become blurred.

Explicit formulations have some advantages over implicit formulations. Explicit formu-
lations enable one to write out the equations of motion in detail. This allows one to inspect
the equations and identify the various terms from a physical point of view, which facilitates
the understanding of the equations. Furthermore, explicit equations derived by various
researches can be compared, and any differences can be identified, clarified and under-
stood. Thus a given formulation can be validated without having to resort to numerical
computations of the blade response and stability.

Computationally, the numerical implementation of blade stability and response calcu-
lations based on explicit formulations can be more efficient than implicit formulations, re-
quiring less computer time. This is due to the fact that in explicit formulations much of the

algebra is carried out prior fo any numerical computations. In addition, explicit ex-



pressions for the stability derivatives are available. Conversely, implicit formulations re-
quire the numerical approximation of the stability derivatives by the computer.
Furthermore, the implicit approach frequently mandates iterative solutions.

Naturally, explicit formulations atso have some disadvantages. The task of formulating
explicit equations can be algebraically formidable and involve a large number of terms.
For this reason explicit formulations generally require employing an ordering scheme to
systematically neglect higher order terms in order to keep the equations to a manageable
size[11]. Another disadvantage of explicit formulations is that a small change in the
aeroelastic model might require the complete rederivation of the explicit equations. In an
implicit formulation the loads are left in general form and are combined numerically. so the
model may be changed without requiring substantial changes in the problem formulation.

Fortunately, substantial increases in computer power during the last decade, as re-
presented by high computational speeds and the availability of large core memory at low
cost, have facilitated the relegation of tedious algebraic tasks to the computer. Many
symbolic manipulation programs exist which can be used to derive the equations of motion
of the blade in explicit form. These equations can then be converted into FORTRAN code
for inclusion into a computer analysis program. Since the algebraic tasks are relegated
to a computer, it is fairly easy to retain as many terms as desired. Furthermore, the
equations can easily be rederived by the computer to reflect any changes in the aeroelastic
model.

In this study, explicit expressions for the distributed loads on the blade are derived us-
ing a special purpose symbolic computing facility consisting of a Symbolics 3650 dedicated
LISP machine running the commercially available symbolic manipulation software package
MACSYMA. The Symbolics machine is networked with a SUN 3/280 server on which the
numerical computations are performed. The mathematical expressions generated by
MACSYMA are ultimately expressed in a format suitable for their incorporation into the
FORTRAN computer program executed on the SUN machine. The Symbolics/Sun combi-
nation, first used in Ref. 38 to formulate explicit helicopter rotor/flexible fuselage equations

of motion. represents a powerful tool for deriving helicopter equations of motion.
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The description of the application of MACSYMA, and its implementation on a Symbolics
3650 machine, to derive the equations of motion used in this study is presented in Appendix
B. The symbolic manipulation procedure used in this study is very similar to the method-
ology used in Ref. 38. All equations and lengthy derivations presented in this study have
been derived using the approach described in Appendix B.

At the time the explicit expressions were formulated in this study the Symbolics/Sun
combination was required. This represented a limitation because such combinations were
not readily or easily available. However, since then, versions of MACSYMA have become
commercially available for Sun workstations and IBM PCs, thus allowing the symbolic
manipulations and numerical computations to be performed on a single machine. Fur-
thermore, the continuing trend toward faster computers with larger core memories has
lead to substantial decreases in execution times of MACSYMA. For example, MACSYMA
installed on a Sparcstation 10/41 runs five times faster than the speeds achieved on the

special purpose dedicated symbolics machine.

2.3 ORDERING SCHEME

In the derivation of the equations of motion for an isolated blade a large number of
higher order nonlinear terms must be considered. These terms arise due to the assump-
tion of moderate blade deflections which introduces many geometric nonlinear terms in the
expressions for the aerodynamic, inertial and structural forces and moments on the blade.
These nonlinear terms must be retained for an accurate stability analysis. But the number
of terms in the equations of motion of the blade can become too large if all of the nonlinear
terms are retained.

Previous research[6,11,38] has demonstrated that the equations of motion may be kept
to a manageable size while maintaining accuracy if an ordering scheme is used to sys-
tematically neglect the higher order terms. An ordering scheme consists of judiciously
assigning orders of of magnitude to the various terms encountered in the equations of

motion and then neglecting all terms of an order higher than some preselected order of
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magnitude. The highest order of magnitude retained in the expressions determines the

accuracy of the equations.
In this study the basis of the ordering scheme is a small dimensionless parameter ¢

which represents typical blade slopes due to elastic deformation. For helicopter blades ¢

is in the range

01<e<02

The ordering scheme used in this study is based on the assumption that
1+ 0@E) =1 (2.1)

i.e., terms of the order of O(¢2) may be neglected in comparison with unity. This ordering
scheme has been demonstrated[38,45,50,53] to yield equations of manageable size with
sufficient numerical accuracy for stability and vibratory hub load calculations.

The majority of the parameters appearing in the equations of motion represent dimen-
sional quantities; thus before orders of magnitude can be assigned, the various parameters
must first be expressed in nondimensional form. This is accomplished using the following

set of dimensional characteristic parameters:
[length] = R - rotor radius
[mass] = M, - mass of one rotor blade
[time] = é - inverse of the rotor speed

The orders of magnitude assigned to the parameters appearing in the equations of

motion are given next. The meaning of each of these parameters is defined in the list of

symbols.

x b M Pa
R" R’ (My/R)" (Mp/R3)’

W, Y, cosy, siny, ag,
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The orders of magnitude assigned to the various parameters listed above are consistent
with Refs. 38, 45, 50 and 53.

The systematic application of this ordering scheme in the derivation procedure yields
a set of explicit nonlinear equations of motion of manageable size, and sufficient accuracy.
The application of the ordering scheme in formulating the equations of motion using the
symbolic manipulation program MACSYMA is described in detail in Appendix B. Note that
the above ordering scheme is used with a certain degree of flexibility so as to enable the
retention of certain higher order terms which may be important but appear negligible in

light of the ordering scheme.

13



24 COORDINATE SYSTEMS

Before deriving the differential equations of motion of the isolated hingeless rotor blade,
it is necessary to define the various coordinate systems used to define the position, ve-
locity and acceleration of arbitrary points on the blade and control flap cross-section. All
coordinate systems are rectangular, and are referenced by a number or letter. The “i”

coordinate system is defined by the set of mutually orthogonal unit vectors denoted by

A

x» €y and @-Zl, which lie along the x,, y, and z, axes, respectively.

e

The following coordinate systems are needed to formulate the equations of motion:

(1) The "0” system is an inertial reference frame with its origin at the hub center O.
The "0” system is oriented such that the gravitational vector is oriented along the negative
2 axis (see Fig. 5).

(2) The "1” system is an inertial reference frame also with its origin located at O.
However, the "1” system is pitched forward from the “0” system by the angle xg such that
the positive z4 axis points upward along the rotor shaft (see Fig. 5). The angle xg is the trim
rotor angle of attack. The "1” system represents the nonrotating or "fixed” system.

{3) The "2” system also has its origin at the hub center Oy but rotates with the blade
with an angular velocity Q about the z, axis, which is coincident with the z, axis {see Fig.
6). The "2” system represents the rotating reference.

{4) The "3” system also rotates with the blade but has its origin at the blade root, located
a distance e from the hub along the x, axis. Furthermore, the "3” system is preconed by
the angle Bp clockwise about y, axis such that the x4 axis is oriented along the undeformed
elastic axis of the blade (see Fig. 7). The "3” system represents the undeformed reference
frame used to define the undeformed position of the blade. The principal axes of the
undeformed blade cross-section are rotated by the pitch angle 65(x) counter-clockwise
about the x5 axis, as shown in Fig. 9.

(5) The “S” system also has its origin at the blade root, rotates with the blade, and is
oriented such that the xg axis and the x5 axis are coincident. However, the "S” system is
rotated by the angle Rq0s, about the xq axis. The "S” system is used to define the orien-

tation of torsional root springs used in the offset-hinged spring restrained blade model (see
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Fig. 2). The parameter R is an elastic coupling parameter used to vary the coupling be-
tween the flap and lead-lag motions. The angle 6, = 65(x = 0) is the geometric pitch angle
of the blade at the root.

{6) The "4” system is a blade attached coordinate system. Before deformation the "3"
system and "4” system are parallel. The “4” system bends and twists with the blade such
that the x, axis remains tangent to the deformed elastic axis at each point (see Fig. 8).
Furthermore, the principal axes of the deformed blade cross-section are rotated by the
pitch angle 65(x) about the x, axis, as shown in Fig. 3. The “4” system represents the de-
formed reference frame used to describe the position of the deformed blade.

(7) The "5” is also a blade attached coordinate system. The 5" system represents the
“4" system with the torsional deformation removed (see Fig. 9) such that the principal axes
of the deformed blade cross-section are rotated by the angle 6 + ¢, where ¢ is the elastic
twist. This system is particularly convenient for deriving the distributed aerodynamic loads
on the blade since the elastic pitching motion of the blade is explicitly represented in the
“5” system. This is described in greater detail in the derivation of the aerodynamic loads
in Chapter 3.

{8) The "C” system has its origin at the hinge point of the control flap, located a distance
Xy behind the elastic axis. The "C” system rotates with control flap deflection & such that
the X axis remains parallel to the x, axis, and the y. and z- axes remain aligned with the

principal axes of the control flap cross-section (see Fig. 11).

2.5 COORDINATE TRANSFORMATIONS
The coordinate transformations between the various coordinate systems listed above

needed in the formulation of the equations of motion are defined in this section.

"0” system to the "1” system

The transformation matrix from the "0” to the "1” coordinate system is given by:
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x1
N COS AR
€yr 0 = 0
N — sindg
€z1

where xg is the trim rotor angle of attack.

The inverse transformation is given by:

A

€0

N cos ag
eyo = . 0

A sin ag
€20

“1" system to the "2” system

. €xo
0 sinag A
1 0 €yo (2.2)
0 cosag N
€20
A
. €x1
—sinag
0 ey (2.3)
€os ag R
€z

The transformation matrix from the "1” to the “2” coordinate system is given by:

A
€x2

0

A
€22

The inverse transformation is given by:

R cos Y/
ey o = | siny
0

A
€21

72" system to the "3” system

cos Y
A _ . i
ey p = | —siny

The transformation matrix from the 2”7 system to the "3” system is given by:

€x3
1
A
ey3 = 0
A - BP
Z3

A
X €x1
sinyy 0 N
cosy O (< ey (2.4)
0 1 R
€21
A
€x2
—sing O0}})
cosy 0|4 ey {2.5)
0 1 R
€22
A
0 [3 €x2
p
1 0 |<&, (2.6)
0 1 N
€22

It has been assumed that the precone angle ﬂp is a small angle.

The inverse of the transformation represented by Eq. (2.6) is given by:
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"3” system to the "S” system
The coordinate transformation from the “3” to the "S” system is given by
A A
exs eX3
A 1 0 0 R
eysp =10 cos(Rclg,)  sin(Rchg,) €y3 (2.8)
A 0 —sin(Rebg,) cos(Rebg,) ||,
€zs €23
The inverse transformation is given by:
A A
€3 €xs
R 1 0 0 N
ey3 > = | 0 cos(Rebg,) - sin(Rebg,) |1 eys (2.9)
R 0  sin(Rgbg,) cos(Reber) | |
€23 €5

"3" system to the "4” system

The ”3” system is used to describe the orientation of the cross-section of the
undeformed blade located a distance x along the elastic axis, while the 4" system is used
to describe the orientation of the same cross-section after the blade’s deformation, con-
sisting of blade bending in two mutually perpendicular planes and twisting about the elastic
axis. In this study the elastic deformation of the blade is described completely in terms
of the lead-lag deflection v(x), the flap deflection w(x), and the elastic twist ¢(x). Thus the
transformation from the “3” system to the "4” system due to blade deformation can be de-
scribed by a unique sequence of angular rotations involving: the elastic twist angle ¢; the
lead-lag blade bending siope v.,; and the flap blade bending slope w.,.. The specific se-
guence of the rotations is important; the precise meaning of each of the three angles de-
pends on the order in which they occur. Therefore a particular rotational sequence must
be adopted and maintained in each stage of the formulation. The deformation sequence
used in this study is flap-lag-torsion. The rotation of the blade cross-section due to blade

bending and elastic twist is therefore described by: 1) a flap rotation by the angle w,,
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clockwise about the y, axis; 2) a lead-lag rotation by the ang'e v,, counter-clockwise about
the z5 axis which has undergone a rotation by the angle w,,; and lastly 3) a torsional rota-
tion by the twist angle ¢ counter-clockwise about the x, axis.

The transformation matrix associated with a rotation by the slope angle w,, counter-

clockwise about the y, axis can be expressed as[46]

1

[Tw,,] = 0
— W

X

w
0 (2.10)
1

o -0

X

when higher order terms are neglected.
The transformation matrix associated with a rotation by the slope angle v,, counter-

clockwise about the z; axis can be expressed as[46]

1 v, O
(ToJ=]-vx 1 O (2.11)
0 0 1

when higher order terms are neglected.
It should be noted that the small angle assumption has been used in the definition of

the transformations associated with the slopes v, and w.,. i.e.

cosv, = 1 + O . cosw, = 1+ O(?)

~

sinv, = v, + 0} | sinw, = w, + O

The above relations are consistent with the ordering scheme represented by Eq. (2.1).
The transformation matrix associated with a rotation by the angle ¢ counter-clockwise

about the x, axis is given by

1 0 0
[Te1=10 cos¢ sing (2.12)
' 0 —sing coso

The small angle assumption is made for ¢ only when convenient.
For the deformation sequence flap-lag-torsion, the coordinate transformation from the

"3” system to the "4” system is given by the matrix product
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where the transformation matrices (Ted. [(Tw, ] and [Ty, ] are defined by Egs.

(2.11) - (2.12). Performing the matrix multiplication yields:

A A
€x4 €3
1 Vix W,y
A . . A
€4 p = | —VixCOSP—w,sing cos¢  sing —v,w, cos ¢ €y3
R VSN —w,,cos¢p —sing cos¢+ v, w,sineg R
€24 €z3
(2.13)
The inverse transformation is given by:
A A
€x3 . . €x4
N 1 —v,cos¢—w,sing V.x Sin ¢ — w,, cos ¢ R
eys 7 = | Vix cos ¢ — sin ¢ €y4
R W,y Sin¢g — v, W, COs @ + v, W, sin @
€3 €24
(2.14)

"3” system to the "5” system
The “5” system represents the "4” system with the torsional rotation ¢ removed,

therefore the transformation matrix from the “3” system to the “5” system is given by:

A A
€xs €xa
s M
eys = [Tv,x][TW,,] ey3
A A
€5 €23

Carrying out the matrix multiplication yields:

A A

€xs5 €x3

A 1 V‘X W‘X A

ys 7 = | —Vvix 1 —w, v, eys (2.15)
A W 1 A

€zs €3

The inverse transformation is given by:
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A A
€ €xs

A 1 Vi =Wy ).,

€ya p = | Vix 1 0 €ys (2.16)
N W — W,V 1 N

€z €zs

"4” system to the "5” system
Since the "5” system represents the “4” system with the torsional angle ¢ removed, the

coordinate transformation from the “4” system to the “5” system is given by:

A A
€ys €x4
N 1 0 0 N
eys > = |0 cosdp —sing €y4 (2.17)
R 0 sing cos¢
A
€zs €74
The inverse transformation is given by:
A A
€x4 €xs
A 1 0 0 N
ey o = |0 cos ¢ sing eys (2.18)
N 0 —sing cos¢ R
€24 €25
"4” system to the "C” system
The transformation from the “4” system to the "C” system is given by:
A A
€xc €x4
N 1 0 0 N
€ p =0 cos é sind €y4 (2.19)
N 0 —sind cosd
€z¢ €24
The inverse transformation is given by:
A A
€x4 €xc
N 1 0 0 N
eyy P = 0 cosd —sind €yc (2.20)
0 sind cosd R
€24 €2c
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Chapter 11l

DISTRIBUTED LOADS ACTING ON THE BLADE

The distributed loads acting on the blade needed to formulate the equations of motion
of the isolated blade are developed in this chapter. The inertial loads are obtained using
D’Alembert’s principle, and a modified version of Greenberg’s[18] quasisteady aerodyna-
mic theory, including the effects of a trailing edge flap, is used to calculate the aerodynamic
loading. Gravitational loading is accounted for, and the structural damping is modeled as
being of the viscous type.

To formulate explicit expressions for the distributed loads acting on the blade, the po-
sition, velocity and acceleration of an arbitrary point on the blade or control flap must be
defined in terms of the blade degrees of freedom. Unfortunately, the modeling of the blade
flexibility differs considerably between the two blade models used in this study; the fully
elastic blade model is assumed to be flexible along the entire span, while the spring re-
strained rigid blade model is assumed to have all flexibility concentrated at the blade root.
Thus the kinematic assumptions, and associated blade degrees of freedom, are different
between the two blade models. The need to independently derive two separate sets of
expressions for the blade loads can be avoided, however, by recognizing that the
kinematics of the spring restrained blade model can be considered as a special case of the
kinematics of the fully flexible blade. Therefore, only the distributed loads acting on the
fully elastic blade model are formulated in this chapter. The procedure for obtaining the
distributed loads on the spring restrained blade mode! from these expressions is described

in detail in Chapter 4.
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3.1 BLADE KINEMATICS

In this study, the Euler-Bernoulli assumption is used, which implies that during bending,
plane cross-sections which are normal to the elastic axis before deformation, remain plane
after deformation, and will be normal to the deformed axis. Furthermore, it is assumed that
strains within the cross-section can be neglected. The Euler-Bernoulli hypothesis is con-
sidered to be a reasonable assumption when applied to a slender flexible beam made of
a linearly elastic, isotropic material, such as the rotor blade modeled in this study. The
assumption is certainly valid in the case of the spring restrained blade model, where the
blade is modeled as rigid outboard of the blade root.

The location of an arbitrary point on the blade cross-section before deformation is de-

scribed by the position vector
- A A A A
Rp=eex2+xex3+yOey3+Zer3

It should be recalled that it is assumed that the blade is initially straight in its undeformed
state. The coordinate pair (y,, Zp) represent the coordinates of an arbitrary point on the
cross-section of the undeformed blade relative to the elastic axis.

The Euler-Bernoulli hypothesis leads to the following expression for the position vector

of the same point after deformation:
- A A A A A A
b= eept(Xxtule,g+vey+wetyoey+2pe;y, (3.1)

where u, v, and w represent the displacement of a point on the elastic axis of the blade in
the /éx3 (axial), Qy3 (lead-lag), and /ézg (flap) directions, respectively. An expression identi-
cal to Eq. (3.1) is used in Refs. 38, 43, and 53 to define the position of an arbitrary point on
the deformed blade cross-section.

The coordinate transformation from the undeformed (“3” system) to the deformed ("4”
system) reference frame has been defined in Chapter 2 by Eq. {(2.13) for the deformation
sequence flap-lag-torsion. In the following sections, the position vector defined by Egq.
(3.1), together with the coordinate transformation given by Eq. {2.13), are used to formulate

explicit expressions for the distributed inertial, gravitational, damping, and aerodynamic
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loads on the blade. The evaluation of the distributed loads is separated into two compo-
nents: (1) the loads which would act on the blade cross-section if there was no control flap;
and (2) the loads due to the presence of a trailing edge flap. This decomposition is par-
ticularly convenient since the control flap extends over only a portion of the blade span,
and facilitates the integration of the distributed loads along the span of the blade.

The expression “blade loads” is used to identify the loads acting on the blade cross-
section without a control flap; and are denoted using the subscript "b”. Similarly, the ex-
pression “control flap loads” is used to refer the contribution of the control flap, which are
denoted by a “c” subscript. The two contributions are ultimately combined, and the sum
is referred to as the “total loads” acting on the blade. The blade loads and the total loads
are evaluated along the elastic axis of the deformed blade. The control flap loads are ini-
tially evaluated at the hinge axis, but are subsequently transferred to the elastic axis before
combining them with the blade loads. The loads are ultimately expressed in the "3” system
in which the equations of motion are formulated.

All of the expressions presented in this chapter, and throughout this study, have been
formulated explicitly using the symbolic manipulation program MACSYMA, executed on a
Symbolics 3650 dedicated LISP machine. A description of MACSYMA and its application
to the formuiation of the explicit expressions is presented in Appendix B. The ordering
scheme given by Eq. (2.1) is employed to neglect higher order terms in order to keep the
expressions from becoming too large. However, the ordering scheme is used with a cer-
tain degree of flexibility so as to enable the retention of certain higher order terms which

may be important but appear negligible in light of the ordering scheme.

3.2 INERTIAL LOADS

D’Alembert’s principle is used to obtain the inertial force and moment per unit volume
from the absolute acceleration of an arbitrary point on the blade or control flap cross-
section. The loads per unit volume are subsequently integrated over the cross-sectional

area to yield the inertial loads per unit span.
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From classical dynamics, the absolute acceleration of a point in a reference frame
which is both translating and rotating relative to an inertial reference frame is given[19]

by

a=Ry+ T +20xr + oxr + ox(@xr) (3.2)

where EO is the position vector of the origin of the moving reference frame relative to the
inertial reference frame,_l: is the position vector of an arbitrary point relative to the moving
reference frame, and w is the angular velocity of the moving reference frame relative to the
inertial reference frame. The time derivatives of EO are taken in the inertial reference
frame and its second time derivative represents the acceleration of the origin of the moving
reference frame relative to the inertial reference frame. The time derivatives of r are taken
in the moving reference frame and its first and second time derivatives represent the ve-
locity and acceleration, respectively, of the point in the moving reference frame.

In the present analysis, the “1” system with its origi;\ at the center of the fixed hub re-
presents the inertial reference frame; and the "2” system which is also centered at the hub,
but rotating with the blade about the z, axis (as shown in Fig. 6), represents the moving
reference frame. Since the origins of the "1” and the “2” systems are coincident, there is

no transiational motion of the “2” system relative to the "1” system; consequently

Ry=Ry=Ry = 0 (3.3)

The angular velocity in Eq. (3.2) can be identified as the angular velocily of the "2” system

about the z, axis given by
O =08, = Qe (3.4)

where Q is the rotational velocity of the rotor shaft. It is assumed that the rotor speed is

constant and the rotor shaft is rigid; therefore

gl
Il
ol
<
&
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Defining _I:p as the position vector of an arbitrary point in the rotating frame ("2” system),

and substituting Egs. (3.3)-(3.5) into Eq. (3.2), yields the following expression for the abso-

lute acceleration of the point:

p

Expressing ?p in the "2” system as

—_

a, = 1, + 20, x T, + Qeyyx (e, x

A A A
rp = rpx2 €0 + rpy2 ey2 + rng €,0

(3.6)

then substituting it into Eq. (3.6), carrying out the cross-products, and collecting the various

terms into x, y and z components, yields:

it A A A
ap = appepnt Apy2 €y2 t apz2 €2

where

a., = Fo,— 200, — Q°r
px2 — 'px2 py2 px2
Ay = Toyy + 200, — Q%r
py2 py2 *<Tpx2 = Tpy2
Apz2 = Tpz2

where the time derivatives of?p are taken in the "2” system.

(3.7a)

(3.7b)

(3.7¢)

Equations (3.7) are used in the following two sections to formulate the distributed

inertial loads acting on the blade and control surface cross-sections using D’Alembert’s

principle.
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3.2.1 Inertial Loads on the Blade
The derivation of the inertial loads acting on the blade presented below is very similar
to those of Refs. 38, 45, and 47. The position vector of an arbitrary point on the cross-

section of the deformed blade can be defined using Eq. (3.1) as:
- A A A A A A
o = @€+ (Xt uU)eg+Vesz+We s+ Yo, eys+ 2o €5 (3.8)

where the subscript “b” has been used to indicate a point on the blade cross-section. The
coordinate pair (ygy. Zgp) represents the coordinates of a point on the blade cross-section
relative to the elastic axis, and can be expressed in terms of the principal coordinates of

the blade cross-section (#, {,,) as follows (see Fig. 9)
Yoo = Mp C0s 0 — {psinfg (3.9a)
ZOb = L:b COS HG + "b sin GG (39b)

where 0 represents the total geometric pitch angle of the blade.
To obtain the absolute acceleration it is necessary to take the time derivatives Of_l:b in

the "2” system. This is facilitated by expressing ?b entirely in the "2” system:

- A M A
o = Tox2 €x2 t Toy2 €y + Myz2 €72

Transforming the unit vectors in Eq. (3.8) to the "2” system using the coordinate transf-

ormations defined Chapter 2, and collecting the x, y and z components yields:

Moxe = (X+ U+ €)= Wl — VooV — Zopw. + ) (3.10a)
foy2 = V+ Yop (3.10b)
rsz = W+(X+ u)ﬁp_y_Ob(Wux+ﬁp)Vxx+20b (310C)

where, for convenience, the following quantities have been defined:

Yoo = Yoo €OS ¢ — Zg, Sin ¢ (3.11a)

Zob Yoo SiN ¢ + Zg, COS ¢ (3.11b)
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The pair (Yop. Zgp) €an be interpreted as the coordinate pair (yq,. Zg,) €xpressed in the ”5”

coordinate system, i.e.
A A - A -— A
Yoo €ys + Zob €24 = Yob ©y5 + Zgp €25 (3.12)

Using Egs. (3.9) and (3.11), the pair (yg,, Zop) Can be expressed in terms of the principal

coordinates of the blade cross-section

Yoo = Mp €os(fg + @) — {, sin(fg + @) (3.13a)

Zop = {pcos(Bg + @)+ np sin(fg + @) (3.13b)

The first time derivative ofﬁr‘D in the “2” system can be expressed as:

-_ . A . A . A
To = Tpx2 €x2 + Moyo €yo + Fuz2 €5

where
foxz = U= Wy = Yool V. + (g + YWy + Bp)]

+ Zoo[(BG + $IV.x — Wiy (3.14a)
Foy2 = V= Zop(Og + ¢) (3.14b)
Fozz = W+ 0B, + Yool (B + @) — (W + Bl — Wpv.i]

+ 2Ob((E)G + (}})xwm + ﬁp)vq( (3.14C)

which were obtained by taking the time derivative of Egs. (3.10), and using the following

relations:
-70b = - zoo(go + ) (3.15a)

Zop = Yoolfs + ¢) (3.15b)

The previous expressions follow directly from Egs. (3.13).
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The second time derivative of_u:b in the "2” system can be expressed as

—_ . A .. A . A
"o = Toxz @x2 + Moy2 €y2 + Toz2 €22
where
Pbx? = U- Wﬂp
. - ) A . . .
+ Yool(8g + @) V.ix — Vi — 205 + dW. — (0 + $Xw.x + Bp)]

+ Zop[(0 + V(W + Bp) — Wy + 20 + ) + (O + 9)v.x] (3.16a)
foyz = ¥ Youlfc + ) — Zos(0G + 6) (3.16b)
Tppy = W+ i]/ip

+ Toul = Wog + Bl — 20y = oy + (B + $PWo + BV

+ 0+ )
+ Zopl 200 + PAW.x + BWox + A0 + WV — (O + b)

+ (0 + X + BoV.xd (3.16¢)

which were obtained by taking the time derivative of Egs. (3.14), and again making use of
Egs. (3.15).
The absolute acceleration of an arbitrary point on the cross-section of the deformed

blade can be expressed in the "2” system as
— A A A
ap = Apyy €y t+ Apyn €y F+ 30 €52
Substituting Egs. (3.10), (3.14) and (3.16) into Egs. (3.7) yields:

Bpyo = U— Why— 20V — Q°[(x + e + u) — wh,]
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+ Yool = (W + BpWox — 2,0, = Wy + (B + $ (o + B,y
+(0g+ )+ Q%]
+ Z0p[(0G + ¢V (Wax + Bp) = Wy + A0 + W + (B + DIV
+ 2006 + ¢) + Qowy + B,)] (3.17a)
Apyy = V+ 20(0 — wWp,) — Q%
~ Yool(Bg + &) + 200, + 200 + dXw., + Bp) + Q7]
— Zoo[(Bg + $) — 2Q(Bg + PV + 2QW,, ] (3.17b)
Apzp = W+ 0B,
+ Foul = (Wox + BplVox = 2,00, = WoVoy + (B + $(Woy + BV
+ (06 + )]
+ Zoo[ 2B + GX Wy + BN + 20 + G W.gv.x — (O + 6

+ (0 + G XW.x + BplVox] (3.17¢)

The distributed inertial loads on the blade are formulated using D'Alembert’s principle;
the inertial force and moment per unit volume acting on the blade cross-section are inte-
grated over the blade cross-section to obtained the inertial force and moment per unit span
acting on the blade. However, before proceeding it is convenient to define certain cross-
sectional integrals involving the principal coordinates of the blade cross-section. These

integrals are defined as follows:

j Pl dA = mpX, (3.18a)
A

b
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A

b

2
J Pollp dA = lygs
A

b

2
J Pels A = lygy
A

b

J Pty dA =0
Ab

(3.18b)

(3.18¢)

(3.18d)

(3.18.e)

where Eqs. (3.18b) and (3.18e) result from the assumption of a symmetric biade cross-

section. The quantity X, represents the offset of the blade cross-sectional center of mass

from the elastic axis and the pair lg, and l,,g3 represent the principal mass moments of

inertia of the blade cross-section.

The distributed inertial force acting on the blade is obtained by integrating the inertial

force per unit volume over the blade cross-section:

which can be expressed in the “2” system as

Evaluating each component of Eq. (3.19) using Eqgs. (3.17) yields:

Pibxe = — | Pplpxe dA
Ah

|

Piby2 = —J Prapy2 dA
A

b

P = —J pbgbdA
A

— IS A A
Pio = Pibx2 €x2 + Pioyo €y2 + Pioz2 €22

MeC2%0x + €) + 2OV + myB (W — wQ?) + my(uQ® — i)

2m, X, sin(Bg + X0 + ¢)

(3.19)

(3.20a)



= 2mQWp ) + my(vQ® — V) — 2m,Qu
+ MpXjp o8(0 + GIQAQ + 2V,,) + (g + ¢ + 228G + PXw.x + Bp)]
+ MpXyp Sin(fg + PN + d) + 20w, — 2B + PV, ] (3.20b)

Pibzz = —f Ppapzo dA

Ay

— MuUB, — mpWw
+ MpXjp COS(BG + @)V Wox + Bp) + W,V + WV — (B + $)]

+ MpXyp sin(0g + GO + ¢ — (B + GXW.x + BVl (3.20c)

The following integral definitions have been used in the integrations over the blade cross-

section:

f PpdA = my, (3.21a)
Ab

J‘ Pb yob dA = mbxlb COS(9G+ (b) (321b)
Ab

J pb ZOD dA = mbx'b Sln(96+¢) (3210)
Ab

The first integral represents the mass per unit span of the blade and the last two integrals
follow from Egs. (3.13) and (3.18).
The distributed inertial moment acting on the blade is obtained by integrating the

inertial moment per unit volume over the blade cross-section:
- A A -
Q|b = _j (yObeys + ZObezs)X pbab dA (322)
A

b

which can be expressed in the "2” system as:
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— A A A
Gip = Qibx2 €x2 + Qiby2 €y2 + Aibz2 €22

Transforming the unit vectors in Eq. (3.22) to the "2” system using the coordinate transf-
ormations defined in Chapter 2, carrying out the cross-product and collecting the various

X, ¥y and z components yields:

Gpx2 = ~ J. Po{Yoplabza + (W.x + BplV.xapya] — Zopapya} dA
Ab

Qiby2 = — J PolYoolbz2 — (Wix + Bplapxe IV x
Ab

+ EOb[(W'x + ﬁp)abn + abx2]} dA

Qibz2 =~ J- Pul = Yool Vix8oy2 + 3px2) — Zoo(W.x + Bplapya] dA
Ab

Substituting Egs. {(3.17) into the previous expressions and performing the integrations over

the blade cross-section yields:
Qioxz = MpXip €OS(BG + OI(VEZ — V)W, + Bolvey — W — 01B,]
+ myXyp sin(0g + ¢ )LV — V) + 200 — 2QW§, ]
— (Iugz + lusaXfs + &)
+ (lygz — huas) cos(Bg + @) sin(Bg + $ QA(Q + 2v,))
+ 206+ $XW.x + Bp)]
+ 2[hygg €050 + &) + Iyga sin’(Bg + $)IQ(Pg + dW.x — W, ]
+ [lugy SN0 + b) + gz oS (Bg + BIIL2V. Wy + V. W

+ (W + XV + V)] (3.23a)
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Quoyz = — MeXpp €080 + QX (W.x + Bp) + WiV,
+ mpXyp Sin(B + O)Q°(x + €) — (QPWh, + Ww,,) + 20V + (uQ? — )]
— (g2 + mssXbg + G WV.x
+ (g2 — Iwga) co8(0G + B) sin(0 + PI(V.xQ@® = V.,) — 20 + W, ]
+ (g €05°(0 + $) + Iuga sin“(Bg + )1[W. — Q3(W. + B)
— 2B + PXQ + V..)] (3.23b)
Qibzo = MpXip cOs(Og + ) — Q%(x + ) — 2Qv + (i — uQ?)
+(WQ? — W)B, + (V — v, ]
+ MpXip $In(g + ¢ XV — v Xw., + B,)
— (g2 + masXOc + YW+ Bp)
+ (lua2 — uas) cos(lG + ¢) sin(0g + )W, — 20 + GXQ + v.,)]

— [lygz Sin%(0g + &) + Iyga cos™(Og + S)I[V., + 20 + )W, ] (3.23c)

The following integral definitions, in addition to those represented by Eqs. (3.21), have been

used in the integrations over the blade cross-section:

J P Vo0 0A = lygy S0 + ) + lygs c0s2(0g + ) (3.24a)
Ab
Ab

Ay
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The above integrals follow from Egs. (3.13) and (3.18) .
Transforming the distributed inertial force to the "3” system, in which the equations of

motion are formulated, using the coordinate transformation defined in Chapter 2 yields

—_ A A A
Pib = Pibx3 ©x3 + Pibya €ya t+ Pipza €23

where

Pibxa = Piox2 + Bp Pibz2 (3.25a)
Pibya = Pipy2 (3.25b)
Piozz = — BpPibxe + Pivz2 (3.25¢)

Similarly, the distributed inertial moment acting on the blade can be expressed in the "3”

system as:

— A A A

Qb = Qibx3 €xa T Aiby3 €y3 + Aibz3 €23
where
Qbxa = Gioxe + Bp Aioz2 (3.26a)
Aipys = Qiby2 (3.26b)
Qipzzs = — Bp ioxe + Gibz2 (3.26c)

3.2.2 Inertial Loads on the Control Surface

The distributed inertial force and moment on the control surface is obtained using
D’Alembert’s principle in a manner similar to that used in calculating the distributed
inertial loads on the blade. The coordinates of an arbitrary point on the control flap

cross-section, relative to the elastic axis, can be expressed as (see Fig. 9}
Yo = Yu t+ Yoc (3.27a)

Zo = ZH + ZOC (327b)
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where
yy = — Xy cosfg (3.28a)
zy = — Xy sinfg (3.28b)

represent the coordinates of the hinge point on the blade cross-section relative to the
elastic axis. The quantity X,; represents the offset between the control surface hinge point
and the elastic axis, and is defined as positive behind the elastic axis. The pair (yo.. Zgc)
represents the coordinates of an arbitrary point on the control flap cross-section relative
to the "C” system, which is parallel to the "4” system but has its origin at the hinge point.
The coordinate pair can be expressed in terms of the principal coordinates of the control

surface cross-section (y., {.) as follows (see Fig. 11)

H

Yoo = M Cos(0g + 6)—{.sin(fg + d) (3.29a)

Zpe = {ccos(fg + &)+ ne sin(fg + &) (3.29b)

where § is the deflection angle of the control surface relative to the blade chord. It should
be noted that the origin of the principal coordinates of the control surface (i, {.) is located
at the control surface hinge point.

Substituting Eqs. (3.27) into Eq. (3.1) yields the position vector of an arbitrary point on

the control flap cross-section

A A A A
e =eept(xtu)egtveztwes,

A A N
+ (YH + Yoo) €ya + (21 + 2gc) €24 (3.30)

which can be expressed in the “2” system in the form:

A A I
fe = Yex2€xo t Meyp €yt Tz €52

Transforming the unit vectors in Eg. (3.30) to the "2” system using the coordinate transf-

ormations defined in Chapter 2 and collecting the terms into x, y and z components yields:

Fexo = (X+ e+ u)= wB,— (Y + YocVix — (T + ZgeXwoy + Bp) (3.31a)

35



yc2
fega = (X+ U+ W — (Vi + YocXWox + BoW.x + Zy + Zoc (3.31¢)

where for convenience the following quantities have been defined:

Yy = Yy COs ¢ —zysing = — Xy cos(fg + @) (3.32a)
Zy = yuSing +zycosdp = — Xy sin(0g + @) (3.32b)
Yoc = Yoc €OS ¢ — Zoc sin ¢ (3.33a)
Zoc = Yoc Sin ¢ + 25 cos ¢ (3.33b)

The pair (Yo Zoc) Can be interpreted as the coordinate pair (ygc, Zoc) expressed in the 5"

system, i.e.
A A p— A -_— A
Yoc €ya T Zoc €24 = Yoc €ys T Zoc €25 (3.34)

Making use of Egs. (3.29), the coordinate pair {Yqc, Zy) can be expressed in terms of the

principal coordinates of the control surface cross-section, i.e.

Yoo = Nc cos(fg + ¢ + ) — {sin(0g + ¢ +9) (3.35a)

. cos(fg + ¢ + 8)+ nesin(fg + ¢ + 6) (3.35b)

Zoc

The time derivatives of_r‘C in the rotating reference frame (2" system) can be obtained
by differentiating Egs. (3.31) with respect to time. The first time derivative of_Fc in the "2”

system can be expressed as:

. A . A . A
fe = Toxa €2t Toyz €y + fezo €22
where

fexa = U— WS,

— TolO + b + BXW.y + B + Vo] + Zo[(Bg + ¢ + S — Wiy ]
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— Tul(BG + XWoy + Bp)+ Vo] + Zy[(B + Vo — Wiy ] (3.36a)
Feys = V= Zod0G + & + 8)— 20 + ¢) (3.36b)
Freo = W+ 0B,
+PoclBg + & +8) — (W + B — Wiy, ]
+ Zodbc + ¢ + SXW.y + BV
+ Tul(0G + ) — (Wax + BolVux = Wn¥ ]

+ 20 + PXW. + Bp)Vey (3.36¢)

The previous expressions were obtained by taking the time derivative of Egs. (3.31), and

using the relations

Yoo = — Zodlfg + & + 3) (3.37a)
Zoc = Yo+ +9) (3.37b)
Yu = —Zulbg+$) (3.38a)
Zy = ulbs+ ) (3.38b)

Equations (3.37) follow from Eq. (3.35), and Egs. (3.38) follow from Eqgs. (3.28).

The second time derivative of_r.C in the "2” system can be expressed as:

.. A . A .. A
fe = Tex2@x2 t Feya €y + Tez0 €22
where

e = U— W, + U

37



+ Vool = Vo + (B + & + 6)2viy — Al + b + )W,y
— (B + ¢ + OXw.x+ By)]
+ Zo [2A0 + ¢ + SV + (B + ¢ + vy — W,y
+ (8 + ¢ + 6w+ B
+ Tul — V(O + $)Vix — 20 + g — (B + SXw. + By)]
+ Zu[ 206 + G W+ (B + O Wox — Wy + (B + §F(Wor + B)]
feyz = V= YodO + ¢ + 8Y — ZoilB + b + 8)
— Yl + ¢) - 2B + 6)
fepo = W+ 0B,
+ Yook = Wy + Bpl.x — 2W, 0y — WV + (B + & + 8 (W.y + B,y
+ (B + b+ 8)]
+ Zoo[20G + ¢ + SXW.x + Bplux + 20 + ¢ + S)w.,v,,
+ (B + & + SN Wi+ By — (B + ¢ + 8F]
+ THL = Wy + Bl = 2W, 0y — Wy + (B + YWy + By
+ 0+ 9]
+ Z4[20G + BXW.x + Bk + 28 + G W,V + (B + GXW.g + BplV.y

— (B + 9]
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The previous expressions were obtained by taking the time derivative of Eqgs. (3.36), and

making use of Eqgs. (3.37) and (3.38) once again.
The absolute acceleration of an arbitrary point on the control surface cross-section can

be expressed in the "2” system as:

_

A A A
Ac = Ao By T Acy2 €y2 + ac2 €22
Substituting Egs. (3.31), (3.36) and (3.39) into Egs. (3.7) yields:

Ao = U — W, — 20V — Q’[(x + e + u)— wB,]
+ Vool = (Wox + Bl ox = 2W. 0 — WV + (B + & + 3w + BplVx
+ (B + ¢ +0)+ Q%]
+ Zoc[(0 + ¢ + 3V (Wax + Bp) — W + 20 + ¢ + SNy
+ (B + ¢ + W+ 20+ ¢ + )+ QX(w, + B)]
+ TRl — (Way + BV — 200, — Wy v,y + (O + 6wy + BoVay
+ (B + &)+ Qv ]
+ 23l + Y (Woy + Bp) — Wy + 206 + )y + (B + PV
+2Q(0g + ¢) + QAw. + B,)] (3.40a)
8y, = V4 20U — Whp) - Qv
— Yol + ¢ + 6 + 200, + 200 + b + dXw. + o) + Q7]

~ Zoclfg + & + 8) = 20 + ¢ + S)v,, + 2., ]
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— V(b + ¢ + 220, + 220 + X w.p + Bp) + Q7]
—Zul(Bg + §) — 20 + .y + 20w ] (3.40b)
ac0 = WHUB,
+ Fool — (Wax + Bplix = 2,0 = Wy + (B + § + 8 (Wo + BV
+(0g+ ¢ +9)]
+ 70 [0 + ¢ + X Wi+ BWox + 206+ ¢ + S, v,
+ (B + ¢ + SXW.+ BV — (g + ¢ + 6)°]
= il — (Wog + By — 2W, ¥y — Wi + (B + )W+ BV
+ (b + )]
= Z4[ 200 + GWAWox + Bp) + A0 + P,V

+ (B + $XW. + Bl — (O + 6] (3.40c)

The absolute acceleration of an arbitrary point on the control surface cross-section is
used to obtain the inertial force and moment per unit volume from D’Alembert’s principle.
These inertial loads per unit volume are subsequently integrated over the control surface
cross-section to obtain the distributed inertial loads acting on the control surface. But be-
fore proceeding it is convenient to define certain cross-sectional integrals of the control

surface principal coordinates. These integrals are defined as follows:

J PclcGA = —mX, (3.41a)
A

4
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f pl.dA =0 (3.41b)
A

(3

2
f PcMcdA = lycs (3.41¢)
AC

2
f pclcdA = lyco (3.41d)
AC
f PclclcdA =0 (3.41¢)
A

C

where Egs. (3.41b) and (3.41e) result from the assumption of a symmetric control surface
cross-section. The quantity X,. is the offset of the mass center of the control surface
cross-section behind the hinge point, and the pair lyc, and ly 3 represent the principal
mass moments of inertia of the control surface cross-section about the hinge axis.

The distributed inertial force is obtained by integrating the inertial force per unit volume

over the control surface cross-section:

P = - j pea. dA (3.42)
A

<

which can be expressed in the "2” system in the form

_— A A A
Pic = Picx2 €x2 T Picy2 &y2 + Picz2 €22

Carrying out the integration for each component of Eq. (3.42) using Egs. (3.40) yields:

Piexe = — [ Pclcxe dA
JA

4

= mQ%(x + &)+ 2m Qv + m B (W — wQ®) + m(uQ? — i)
+2m X, Q2 sin(fg + ¢ + 8XBg + ¢ + 3)

+2m X Q sin(0g + ¢ XOg + ¢) (3.43a)
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Piey2 = _J. Pcacyr dA
A

C

2m QWS + m(vQ? — V) — 2m Qu

— M X, cos(8g + ¢ + O)[(Bg + b + 5 + QQ + 20.,)
+ 200 + ¢ + SYw., + B,)]
— MXi SinBg + ¢ + OB + ¢ + ) + 20w,
—20(0 + ¢ + 5)v.,]
— McXyy €088 + $)(BG + ) + QQ + 2V,,) + 28 + $Xw. + B,)]

— mXy sin(Bg + ¢)(Bg + ) + 2Qw,, — 2005 + d)v., ] (3.43b)

Picz2 = —j Pcdczo dA
AC

— mw — muf,
+ MXie €os(0 + ¢ + (B + ¢ + 8) = (W + By — 2W,, 0,
— W.,V.i]
— MXic sinfg + ¢ + (B + ¢ + Y — (Bg + ¢ + SXw. + Bpvox]
+ McXyy cos(0G + G)(Bg + ¢) — (Wox + By — 20,0, — Woyv ]

- mcXy, sin(fg + )0 + ) — (O + YW, + Bolv,,] (3.43c)

The following integral definitions have been used in the integrations over the control sur-

face cross-section:
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pcdA = mg (3.44a)

AC

j PcYoc dA = — m X cos(fg + ¢ + 9) (3.44b)
AC

j PcZoc dA = — m X sin(fg + ¢ + ) (3.44c)
AC

The first integral represents the mass per unit span of the control surface and the last two
integrals follow from Eqgs. (3.35) and (3.41) .
The distributed inertial moment about the control surface hinge point is obtained by

integrating the inertial moment per unit volume over the control surface cross-section:

—= - A _ -
qin = — f (yOc eys + ZOC ,e\zs) X pcac dA (345)
A

<

Transforming the unit vectors in Eq. (3.45) to the "2" system using the coordinate transf-
ormations defined in Chapter 2, carrying out the cross-product, and collecting the x, y and

z components yields:

— A A A
Gih = Oihx2 €x2 + Qihy2 €y2 + Ainz2 €22

where
Qihxz = — f pei¥oclacz + (Wi + Bp)v-xacyQ] - EOcacyz} dA
AC
Qihy2 = — f PctYoclacza — (W + Bp)acxz]v»x
Ab
+ 2Oc[(wvx + Bp)acz2 + acx2]} dA
Qhz2 = — f pel — YodVix@cyz + acx) — Zpcacy] dA
A

c
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Substituting Egs. (3.40) into the previous expressions and performing the integrations over

the control surface cross-section yields:
Qinxe = MXic Cos(Bg + ¢ + )W + B, — (VO — VYWux + Vo]
+ MeXi sin(Bg + ¢ + )V — V) + 20w, — 2Q0]
— (o + ImeaXbg + ¢ + 8)
+ (lmcz = Imca) cos(8g + @ + ) sin(Bg + ¢ + O)QQ + 2v,,)
+ 2B+ ¢ + 6wy + )]
+ 2[Iygcp €OS°(Bg + ¢ + 8) + lycs Sin%(B + ¢ + 8)IQL — Wy
+(0g+ @ + SWy]
+ [lyca SINYOg + ¢ + 8) + lyyes cOs2 (B + ¢ + 8)][2V, Wy
VoW (W + BV + 27V,
= MX XPAQ + 2v,,) cos(fg + p) sin(0g + ¢ + 8)
— mX, X8 + ¢) cos &
— mX Xl + @) sin & (3.46a)
Qiny2 = McXic cos(0g + ¢ + SXQ(W., + Bp) + Wlv.,
+ mcXie sin(0g + ¢ + 8) — QAx + ) + (W, + fw2?)
+ (U — uQ?) — 20v]

— (lyca + ImcaXbg + ¢ + v,y
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¥ (lyca — Iucs) Cos(Bg + & + 8) sin(Bg + ¢ + S)[(vV., Q% — V.,)
— A8+ ¢ + )., ]
+ [lycy €050 + ¢ + 8) + lycs Sin*(0g + ¢ + 8)][W.x
— Q%W+ By — A+ Vo XOs + d +6)]
— 2m X, X0 + &) sin(dg + ¢) sin(fg + ¢ + 6) (3.46b)
Qinza = McXic COS(OG + ¢ + H[QAx + e) + (uQ? ~ )
+ 200 + (V022 — Wy + (W — W), ]
+ M X\ SO + ¢ + 0wy + B XvQ — V)
— (hca + ImcaXBg + & + SXw.+ B)
+ (lmca — Imca) cos(fg + @ + 8)sin(8 + ¢ + S)[W 4
—2AQ+ V., X0 + ¢ + )]
~ [lyca SIN’(0g + & + 8) + lyca cosX(Bg + ¢ + $)I[V.x
+ 205+ ¢ + Sw,]

+ 2m X, XpQ0g + d)sin(0g + ¢) cos(fg + ¢ + 8) (3.46¢)

The following integral definitions, in addition to those represented by Eqs. (3.44), have been

used in the integrations over the contro! surface cross-section:

j P VR A = lycy SIn%Bg + & + 8)+ yca cos’(B + ¢ + 8) (3.47a)
A

4
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f Pec ch dA = lyey cosQ(BG + ¢ +90)+ yes sinQ(OG + ¢ +9) (3.47b)
AC

f PcYoc Zoc 9A = (hyca — luco) cos(@g + ¢ + 6) sin(fg + ¢ + ) (3.47¢)
A

C

The above integrals follow from Eqs. (3.35) and (3.41) .

The distributed inertial loads acting on the control surface can be transformed from the
"2” system to the "3” system, in which the equations of motion are formulated, using the
appropriate coordinate transformation defined in Chapter 2. The distributed inertial force

acting on the control surface can be expressed in the "3” system as:

— A A A
Pic = Picxa €x3 t Picya €y3+ Picz3 €23

where

Piexs = Piexe + Bp Picz2 (3.48a)
Picys = Piey2 (3.48b)
Piczz = — BpPicxa + Picz2 (3.48¢c)

Similarly, the distributed inertial contro! surface hinge moment can be expressed in the ”3”

system as:

- A A A

Qin = 9hx3 €x3 t Qinya €y3 + Ainza €23
where
Uirxa = 9inxe + Bp Ainz2 (3.49a)
Gihy3 = Qihy2 (3.49b)
Qhzs = — BpUine + Qinz2 (3.49¢)

The distributed inertial moment about the elastic axis of the blade due to the control

surface inertial loads is given by
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_ - A _ A -
Qc = Ain+ (Y eys + Zy €25) X Py (3.50)

Transforming the unit vectors in the above expression to the "3” system using the appro-
priate coordinate transform defined in Chapter 2, carrying out the cross-product, and col-

lecting the various terms into x, y and z components yields:

_ A A A
Gic = Qicx3 €xat Gicy3 ©ya + Qicza €23

where

Qexa = (= Vix Wi ¥ + EH)pk;y:; + YH Piez3 (3.51a)
Aieys = (= Vix Wi Vi + Zi)Picxa + (Vix Y + Wax Zp)Picza (3.51b)
Qicza = — YH Pioxa — (Vi Vi + W Z1)Pieya (3.51¢)

3.3 GRAVITATIONAL LOADS
The distributed gravitational loads are obtained by integrating the gravitational force
and moment per unit volume over the cross-sectional area. The gravitational vector is

oriented along the negative z, axis, i.e.
—- A
g = — gey (3.52)

where g is the acceleration due to gravity. Transforming ‘A?zo to the "2” system using the

coordinate transformations defined in Chapter 2 yields:

—- A A A
g = Uxexxt gya€ynt 9z2 €z

where

Ox2 = — gsinxgcosy (3.53a)
dyp = gsinxgsiny (3.53b)
9z = —gcCosiug (3.53c)
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The gravitational vector defined above is used in the following sections to obtain the dis-

tributed gravitational loads on the blade and control surface.

3.3.1 Gravitational Loads on the Blade

The gravitational loads per unit span acting on the blade are obtained by integrating the
gravitational force and moment per unit volume over the blade cross-section. The deriva-
tion presented below is similar to those of Refs. 38 and 50. The distributed gravitational

force on the blade is given by:

Pep = f Pp g dA (3.54)

Ab
which can be expressed in the "2” system as:
—_ A A A
Peb = Pcox2 €x2 1 Poby2 €y2 + Pgbz2 €22

Evaluating each component of Eq. (3.54) and making use of Egs. (3.53) yields:

Pobxe = | PbIxedA = — mygsin xg cosy (3.55a)
Ab

PGby2 = J. Pb9yo dA = mygsin xg siny (3.55b)
Ab

Pobz2 = | Pb9z2dA = — mpgcosag (3.55¢)
Ab

The gravitational moment per unit span about the elastic axis is obtained by integrating

the gravitational moment per unit volume over the blade cross-section

- p— A — A —
AGp = f (Yoo €ys + Zgp €25) X pp g dA (3.56)
Ab
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Transforming the unit vectors in Eq. (3.56) to the "2” system using the coordinate transf-
ormations defined in Chapter 2, performing the cross-product, and collecting the various

terms into x, y and z components yields:

— A A A
96b = AGbx2 €x2 T Geby2 €y2 T Aobz2 €22

where

debxe = f Po (Yoo [9z2 + (W + BpVox 9yo] — Zgp 9y0} A

Ay

quy? = J. Pb {yOb [922 - (va + ﬂp) gx2]vvx + EOb [(va + ﬁp) 9z2 t sz]} dA
Ay

dgbze = J. Po [ — Yoo (VixBy2 + 8x0) — Zop (Wi + Bp) 9] dA
A

b

Substituting Eqs. (3.53) into the previous expressions and performing the integrations over

the blade cross-section yields:

Aooxe = — MpGX